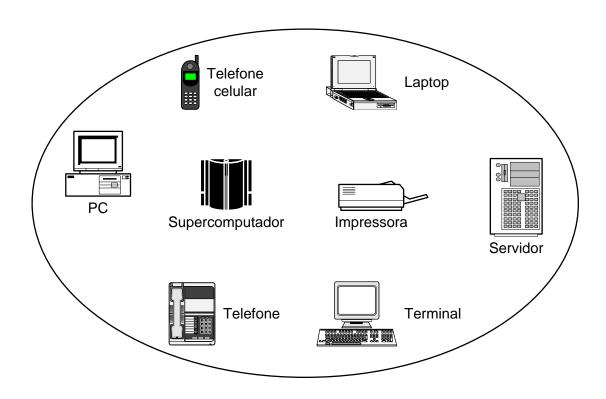

02 – MEIOS DETRANSMISSÃO DE DADOS

PROFESSORES:

OSMAR DE OLIVEIRA BRAZ JUNIOR

JORGE WERNER

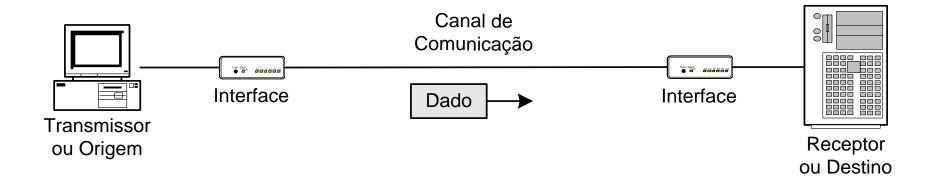

OBJETIVO DA AULA

- Compreender o funcionamento da comunicação de dados.
- Identificar os meios físicos de comunicação de dados, suas características, vantagens e desvantagens.

MOTIVAÇÕES

- O que é uma rede?
 - Conjunto de dispositivos interconectados com a finalidade de trocar informações e compartilhar recursos.
- Por que e para quê servem as redes?
 - Troca informações;
 - Compartilhamento de recursos de software e hardware;

REDES DE COMPUTADORES



O QUE COMPÕE UMA REDE

- Composta essencialmente por 4 elementos:
- Transmissor ou origem;
- Receptor ou destino;
- Meio ou canal de comunicação; e,
- Protocolos

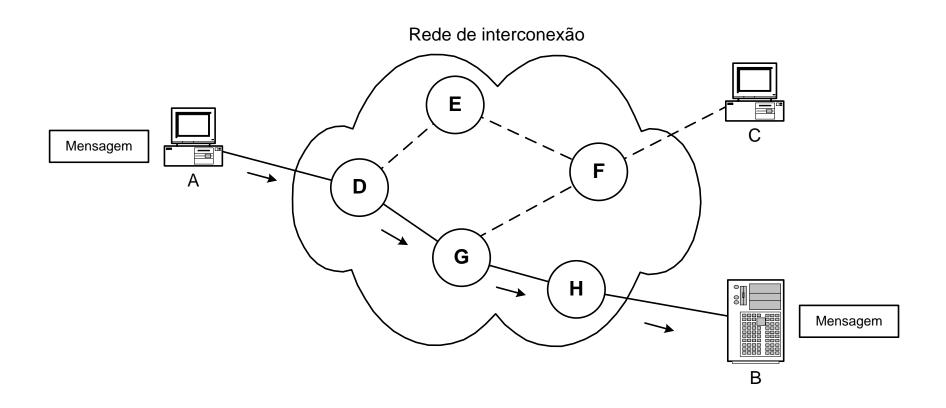
■ Transmissor e receptor alternam funções em um processo de comunicação;

TRANSMISSOR, RECEPTOR E CANAL DE COMUNICAÇÃO

TRANSMISSOR, RECEPTOR E CANAL DE COMUNICAÇÃO

- Para ser transmitido, o dado precisa ser codificado em um sinal que percorrerá o meio de transmissão até chegar ao destino, onde será decodificado.
- Por exemplo, quando alguém fala ao telefone analógico, a voz (dado) é codificada em pulsos elétricos (sinal) e transmitida utilizando o par telefônico (canal de comunicação). No destino, os pulsos elétricos são decodificados para o formato original.
- A codificação e a decodificação do sinal são implementadas pela interface de comunicação, que no exemplo é o próprio telefone.

COMUTAÇÃO

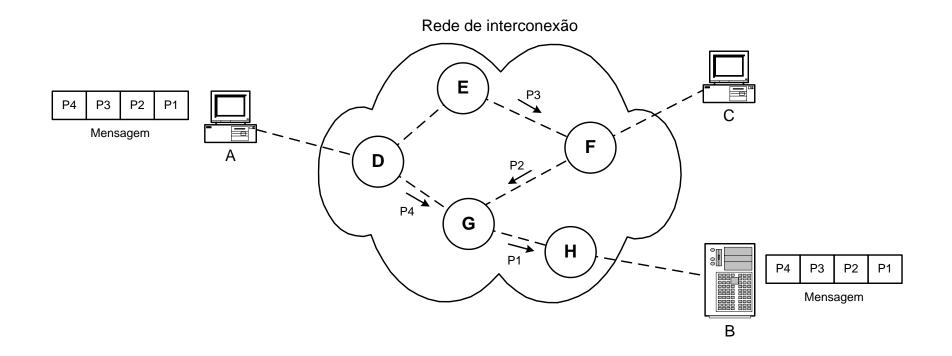

COMUTAÇÃO

- Técnica utilizada para definir "rotas" que interliguem dois dispositivos a partir de uma rede de interconexão;
 - Comutação por circuito;
 - Comutação por pacote;

COMUTAÇÃO POR CIRCUITO

- Na comutação por circuito é estabelecido um caminho interligando a origem ao destino, chamado de circuito;
- O circuito é criado antes do início do envio da mensagem e permanece dedicado até o final da transmissão;
- A comutação por circuito pode ser comparada a uma ligação telefônica entre duas pessoas A e B;
 - Inicialmente, A disca para B, e, caso haja um caminho disponível ligando os dois aparelhos, o telefone de B irá tocar.
 - Caso contrário, A receberá um aviso de que o telefone desejado está ocupado. Ao atender o telefone, B estabelece o
 circuito e a conversa com A pode ser iniciada.
 - O circuito permanecerá alocado enquanto a ligação não for encerrada por uma das partes.
 - Caso o dispositivo C queira se comunicar com B, não será possível, pois o circuito G-H-B já está alocado.

COMUTAÇÃO POR CIRCUITO


COMUTAÇÃO POR PACOTE

- Não existe um circuito dedicado ligando a origem ao destino;
- Inicialmente, as mensagens são divididas em pedaços menores, chamados pacotes
- Os pacotes são, então, encaminhados pelos dispositivos intermediários, também chamados de roteadores, de forma independente, até chegarem ao destino.

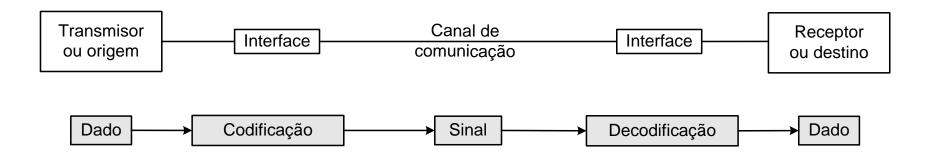
COMUTAÇÃO POR PACOTE

- Por exemplo, na Figura a seguir a mensagem foi dividida em quatro pacotes, e cada um foi encaminhado por uma rota diferente em direção ao destino.
- Esse processo é chamado de roteamento.
- Nesse caso, o dispositivo C poderá comunicar-se com B ao mesmo tempo que A, compartilhando a utilização da rede de interconexão.

COMUTAÇÃO POR PACOTE

A COMUNICAÇÃO DE DADOS

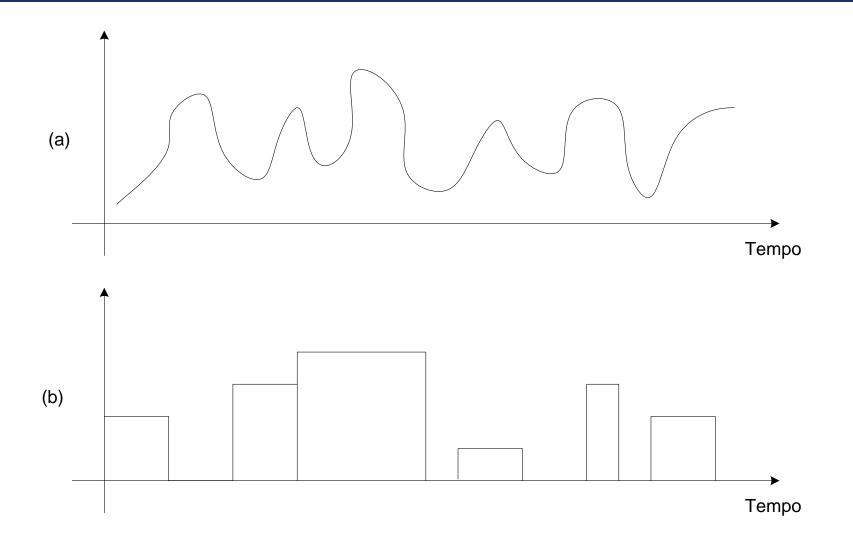
- Essa comunicação diz respeito à interação entre sistemas de dados que abrangem diversos recursos e estão espalhados em diferentes localizações.
- A comunicação de dados trata da transmissão de sinais através de um meio físico, de forma confiável e eficiente.


SISTEMAS DE COMUNICAÇÃO DE DADOS

- Sistemas de comunicação de dados são importantes ferramentas que compõem o universo das redes de computadores, pois os usuários precisam de um sistema capaz de aumentar o poder computacional e também compartilhar recursos, conforme segue:
 - Aumentar o poder computacional
 - Compartilhar recursos

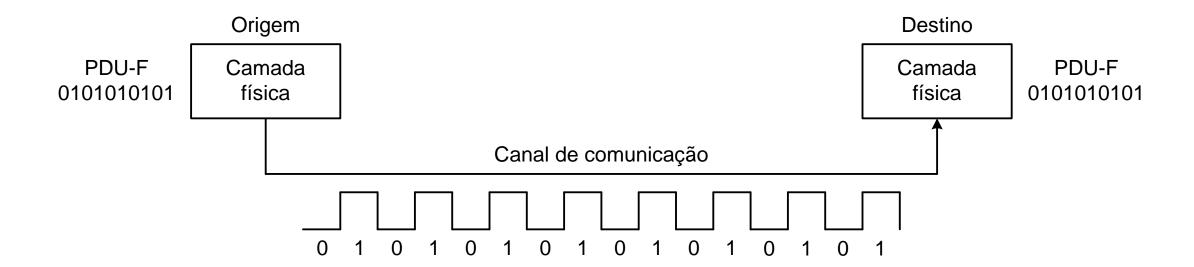
OBJETIVO DE UM SISTEMA DE COMUNICAÇÃO

- O principal objetivo de um sistema de comunicação é trocar dados (informação) entre dois sistemas autônomos e interconectados.
- A comunicação de dados também tem como objetivo aumentar a confiabilidade de sistemas por meio de redundância de hardware e software.
- Um terceiro objetivo é a economia, computadores de pequeno porte apresentam uma relação custo/desempenho muito melhor que os computadores de grande porte.


PROCESSO DE TRANSMISSÃO

SINAIS ANALÓGICO E DIGITAL

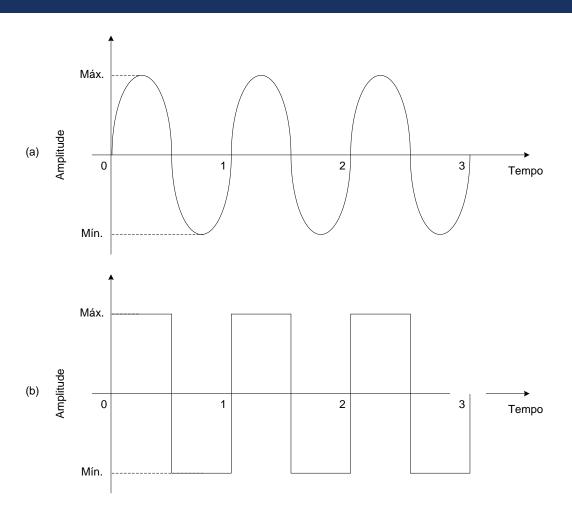
- Tanto dados quanto sinais podem ser classificados como analógicos ou digitais.
- Analógico variação contínua no tempo
 - visão e audição humanas;
- Digital variação discreta em função do tempo
 - Computadores são considerados digitais porque representam dados e sinais apenas com dois valores: 0 ou 1.


SINAIS ANALÓGICO E DIGITAL

OS SINAIS NAS REDES

- Em redes de computadores:
 - Dados estão no formato digital;
 - codificados em sinais analógicos ou digitais;
- Transmissão efetiva dos dados, representados por uma sequência de bits;
 - codificada em sinais na origem e transmitida pelo canal de comunicação.
 - recebidos no destino e decodificados, formando novamente a sequência de bits transmitida.

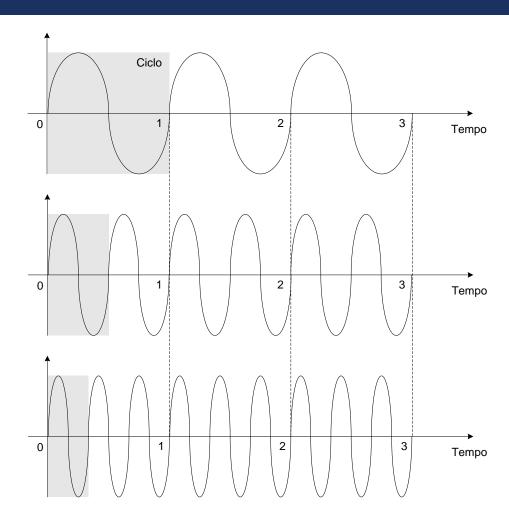
SINAIS


CARACTERÍSTICAS DE UM SINAL

- 3 características fundamentais:
 - Amplitude;
 - Frequência;
 - Fase;

CARACTERÍSTICAS DE UM SINAL

- Amplitude
- A amplitude de um sinal está relacionada à potência e geralmente é medida em volts;
- sinal analógico a amplitude varia continuamente,
- sinal digital a amplitude varia discretamente em função do tempo.


SINAL PERIÓDICO

CARACTERÍSTICAS DE UM SINAL

- Frequência:
- A frequência de um sinal é o número de vezes que o ciclo se repete no intervalo de I segundo;
- ciclo representa a variação completa da amplitude do sinal, ou seja, a variação de zero a um valor máximo, passando por um valor mínimo e retornando novamente a zero;
- medida em em hertz (Hz);

FREQÜÊNCIA DE UM SINALANALÓGICO

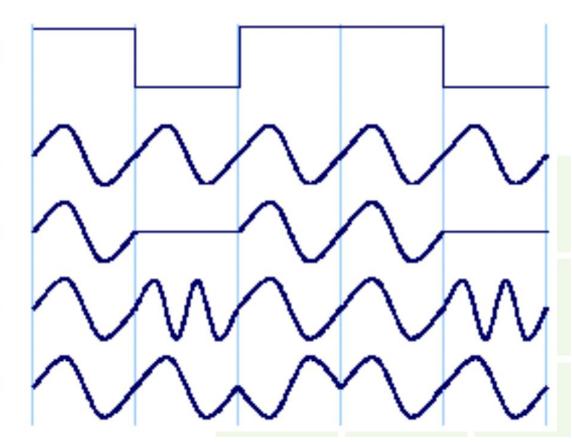
CARACTERÍSTICAS DE UM SINAL

- Frequências importantes:
- Som: 100 Hz e 18000 Hz;
- frequências mais baixas representam os sons mais graves, e as mais altas, os agudos.
- Utrasom > 20000 HZ
- Luz: 4,3*1014 Hz e 7*1014 Hz.
- frequência mais baixa representa a cor vermelha, e a mais alta, a cor violeta.
- Infravermelhor e ultravioleta

MULTIPLEXAÇÃO E MODULAÇÃO

- São técnicas que se propõem a transportar os dados utilizando características adequadas ao meio de transmissão
- Banda passante do sinal
 - Intervalo de frequências que compõem este sinal.
 - Ex: a voz humana vai de 80Hz até 12KHz
- Largura da banda passante do sinal
 - É o tamanho da banda passante do sinal
 - Ou seja, a diferença entre a maior e a menor frequência.
 - Ex: Largura de banda da voz humana? 12.000Hz 80Hz = 11.920Hz

TÉCNICAS DE MODULAÇÃO


Sinal original

Portadora

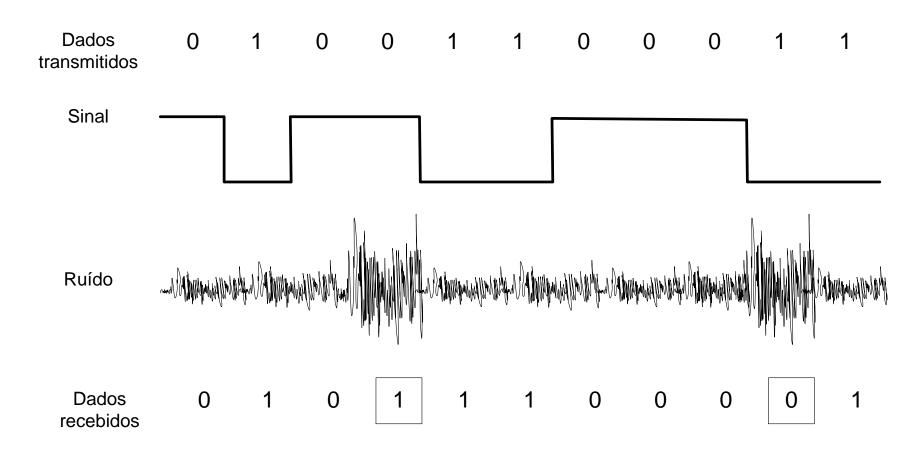
Mod. Amplitude

Mod. Frequência

Mod. Fase

MULTIPLEXAÇÃO

 Permite a transmissão de mais de um sinal simultaneamente em um mesmo meio físico.


Existem três formas básicas de multiplexação:

- Multiplexação de Frequência FDM Frequency Division Multiplexing
- Multiplexação no Tempo TDM Time Division Multiplexing
- Comprimento de onda (WDM ou Wavelength Divison Multiplexing)

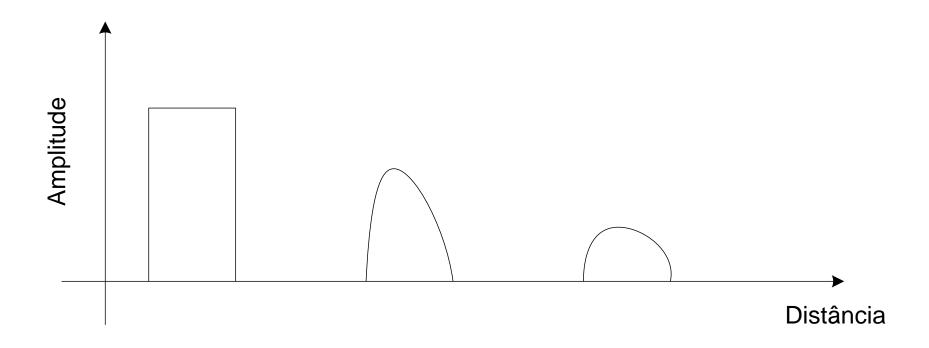
PROBLEMAS NA TRANSMISSÃO

- Ruídos:
 - Interferências eletromagnéticas;
 - provocam distorções nos sinais transmitidos e alteram o seu significado;

EXEMPLO DE EFEITO DO RUÍDO

FONTE DE DISTORÇÃO DE SINAIS

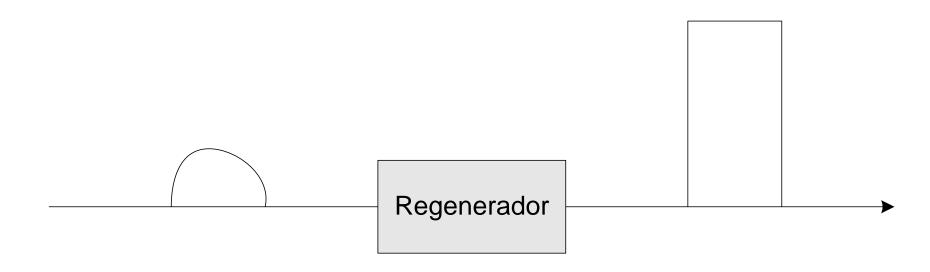
- Ruídos: interferência de sinais indesejáveis. Um dos maiores limitantes do desempenho.
- Atenuação: a potência de um sinal diminui com a distância, em qualquer meio físico. Atenuação acontece devido as perdas de energia por calor e por radiação, quanto maior a frequência de transmissão, maior a perda.
- Ecos: os sinais são refletidos e voltarão por essa linha, podendo até corromper os sinais que estão sendo transmitidos.


PROBLEMAS NA TRANSMISSÃO

- Diferentes fontes de ruídos:
- Térmico variação de temperatura do meio;
- Intermodulação interferência entre faixas de frequência;
- Crosstalk eletromagnéticas por proximidade de cabos e antenas;
- Ruído impulsivo descargas elétricas e motores;

PROBLEMAS NA TRANSMISSÃO

- Atenuação:
 - Perda de Potência do sinal ao longo do canal de comunicação;
 - Atrelado ao meio de transmissão e distância entre dispositivos;
 - Cabo Ethernet


ATENUAÇÃO DE UM SINAL DIGITAL

PROBLEMAS NA TRANSMISSÃO

- Atenuação:
 - Uso de equipamentos como amplificadores e regeneradores/repetidores para minimizar/resolver o problema da atenuação;

REGENERAÇÃO DE UM SINAL DIGITAL

MEIOS DE TRANSMISSÃO

- O meio de transmissão serve para transportar fisicamente os sinais codificados entre o transmissor e o receptor.
- meios com fio:
- Cabos;
- meios sem fio:
- Ar, água ou vácuo;

MEIOS DE TRANSMISSÃO

Meios com fio	Meios sem fio
Par trançado	Rádio
Cabo coaxial	Microondas
Fibra ótica	Satélite
	Infravermelho

TIPOS DE SINALIZAÇÃO

- Um meio de transmissão pode suportar:
 - Sinalização analógica;
 - Sinalização digital ou;
 - Ambas.

TIPOS DE SINALIZAÇÃO

Meio de transmissão	Sinalização analógica	Sinalização digital
Par trançado	√	√
Cabo coaxial		$\sqrt{}$
Fibra ótica		
Rádio, microondas e satélite		
Infravermelho		

TIPOS DE SINALIZAÇÃO

- Vale ressaltar que um meio que permite apenas sinais analógicos como a fibra ótica permite que os dados sejam transmitidos digitalmente;
- Nesse caso, os dados são digitais, e o sinal é analógico;
- O mesmo exemplo é aplicado aos telefones celulares digitais, que transmitem a voz digitalizada utilizando sinais analógicos;

- Confiabilidade
 - O quanto um meio é capaz de ser menos suscetível a problemas na transmissão;
 - Transmissões sem fio são mais suscetíveis a problemas que as transmissões com fio.
 - Para redes cabeadas
 - fibra ótica | cabo coaxial | par trançado.

- Instalação e manutenção
 - tipo do meio e interfaces de comunicação;
 - número de dispositivos e distância que os separam.
- Redes cabeadas:
 - a passagem de cabos nem sempre é uma tarefa simples;
- Vantagem dos meios de transmissão sem fio;
 - rede local, a instalação dispensa totalmente o uso de fios.

Custos

- Instalação e manutenção,
- Interfaces de comunicação e
- dispositivos de rede como hubs e switches.
- De uma maneira geral, quanto maiores o número de dispositivos e a distância que os separa, maior será o custo como um todo.

Custos

- Redes sem fio de curto alcance, que utilizam pequenas antenas, os custos de instalação são mínimos.
- Por outro lado, redes sem fio de longo alcance exigem diversas antenas para propagar o sinal, o que torna considerável o custo de instalação.

MEIOS FÍSICOS DE TRANSMISSÃO

MEIOS FÍSICOS DE TRANSMISSÃO

- Meios de Transmissão diferem com relação:
 - Banda Passante;
 - Ponto-a-ponto ou Multiponto;
 - Atenuação do meio;
 - Imunidade a ruídos;
 - Custo;
 - Influencia diretamente no custo da interface com a rede
 - Confiabilidade;

MEIOS DE TRANSMISSÃO

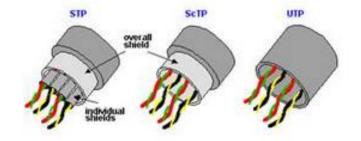
Meios Físicos mais utilizados em Redes:

- Par Trançado;
- Cabo coaxial;
- Fibra Ótica.

Sob Circunstâncias Especiais:

- Radiodifusão;
- Infravermelho;
- Enlace de satélite;
- Micro-ondas.

PAR TRANÇADO


- Par Trançado: dois fios são enrolados em espiral;
- Originalmente foi desenvolvido para telefonia;
- Transmissão analógica ou digital;
- Perda de energia (atenuação) do sinal varia de acordo com a velocidade e distância imposta;
- Perda de energia também pode ocorrer por: Radiação; Calor.

PAR TRANÇADO

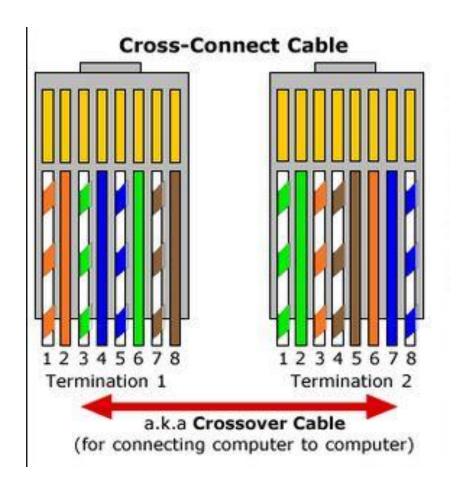
- Desvantagem do par trançado é a sua extrema sensibilidade à interferência e ruído;
- Desvantagem que é amenizada com a utilização de blindagem;
 - STP Shielded Twisted Pairs (blindado);
- Com a evolução dos cabos de par trançado, foi definido uma classificação para os cabos sem blindagem UTP - Unshielded Twisted Pairs:

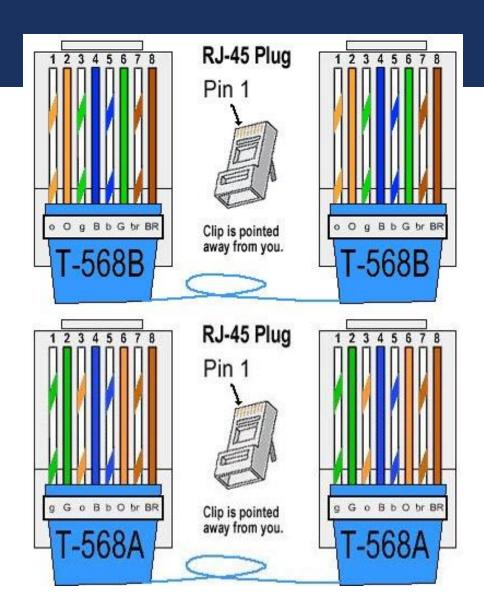
PAR TRANÇADO CLASSIFICAÇÃO DOS CABOS UTP

CAT#	Tipo de Cabo	Largura de Banda	Taxa de Dados
CAT1	UTP	Voz analógica	
CAT2	UTP	Voz digital	
CAT3	UTP/ScTP/STP	16 MHz	4 Mbps
CAT4	UTP/ScTP/STP	20 MHz	16 Mbps
CAT5	UTP/ScTP/STP	100 MHz	100 Mbps
CAT5e	UTP/ScTP/STP	100 MHz	1 Gbps
CAT6	UTP/ScTP/STP	250 MHz	10 Gbps (< 10 m)
CAT6a	UTP/ScTP/STP	500 MHz	10 Gbps (> 10 m)
CAT7	ScTP/STP	600 MHz	10 Gbps / 100 m
CAT7a	ScTP/STP	1000 MHz	40 Gbps (< 15 m)

CABO DE PARTRANÇADO

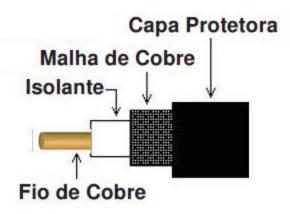
Cabo cat 5E, certificado para o padrão EIA-568-B



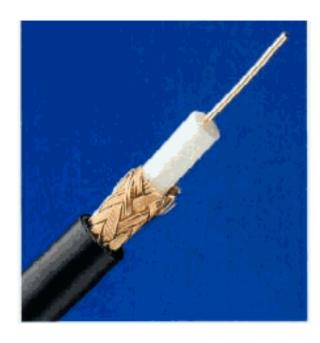

PADRÕES DE CONECTORIZAÇÃO

Cabo cross-over (pares cruzados) -interligar duas máquinas diretamente – posição dos fios é diferente nas pontas.

PAR TRANÇADO


CABO STP (SHIELDED TWISTED PAIR)

- Par trançado blindado
- Necessário em ambientes com grande nível de interferência eletromagnética.

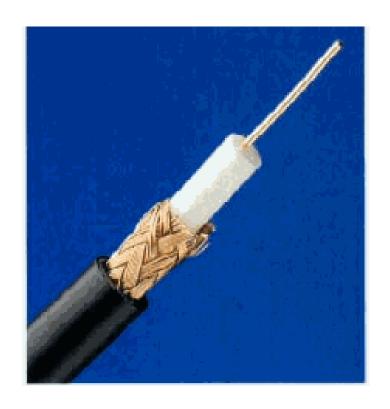

CABO COAXIAL

- Cabo coaxial consiste em um fio de cobre esticado na parte central, envolvido por um material isolante.
- O isolante é protegido por um condutor cilíndrico, geralmente uma malha sólida entrelaçada.
- O condutor externo é coberto por uma camada plástica protetora.

CABO COAXIAL

Cabo Coaxial Fino (10Base2)

- Foi um dos primeiros a ser utilizado nas redes locais.
- Em cada placa de rede se coloca um conector tipo "T" que permite a conexão do cabo que vem de outro PC. Na última máquina da linha coloca-se um terminador para que os dados sejam absorvidos e não retornem para a rede causando ruídos e terferências.

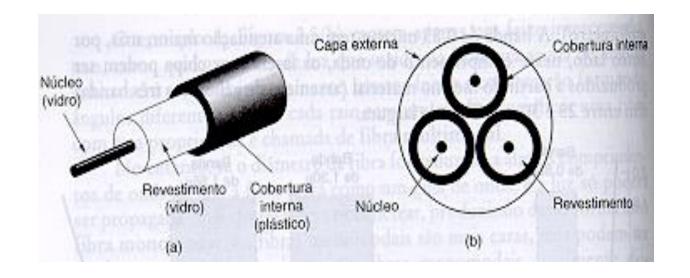

CABO COAXIAL

CABO COAXIAL FINO

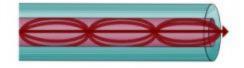
- Cabo coaxial banda base
- Mais utilizado em redes locais
- Topologia em barra
- Mais maleável
- Modo de transmissão half-duplex

Cabo Coaxial Fino (10Base2)

CABO COAXIAL GROSSO

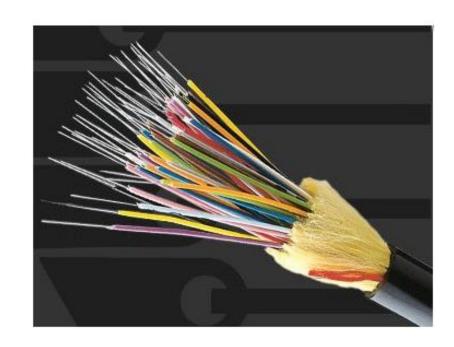

- Cabo coaxial banda larga
- A banda é dividida em dois caminhos: de transmissão e de recepção.
- Aplicações em redes locais com integração de serviços de dados, voz e imagens.
- Modo de transmissão Full-Duplex

Cabo Coaxial Grosso



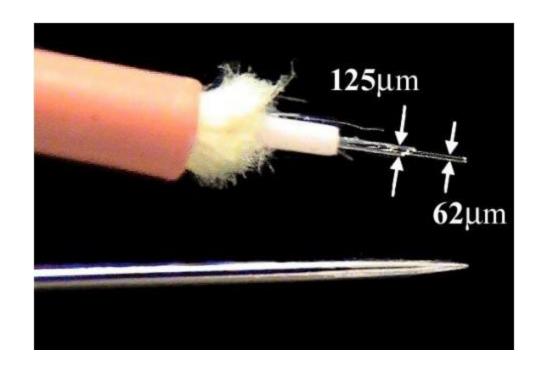
FIBRA ÓTICA

- Os cabos de fibra óptica são semelhantes aos coaxiais; a exceção fica por conta da malha entrelaçada.
- No centro, fica o núcleo de vidro através do qual se propaga a luz.

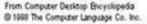


FIBRA ÓTICA

- Vantagens das fibras são inúmeras entre elas:
 - Taxas mais altas;
 - Imunidade total no tocante a ruídos e interferência;
 - Maneabilidade e peso;
 - Distâncias maiores


FIBRA ÓTICA

Multimodo


• 62 micra de diâmetro (fio de cabelo humano).

Monomodo

- 8 a 10 micra de diâmetro.
- Reduzindo o diâmetro da fibra, a luz só é propagada em linha reta, sem "ricochetear".

FIBRA ÓPTICA

Monomodo – uma fibra com um diâmetro menor que 10 mícron usada para transmissões de alta-velocidade em longas distâncias. Possui uma maior banda de transmissão do que as fibras multimodo.

Multimodo – uma fibra com um diâmetro entre 50 e 100 mícron usada para pequenas distâncias, tipicamente em LANs. A luz pode ser transmitida em diferentes ângulos dentro da fibra, refletindo nas paredes da fibra.

CABOS SUBMARINOS

- No Brasil, existem seis cabos submarinos em funcionamento. Eles estão enterrados a até 1.000 metros de profundidade no oceano com um revestimento metálico de duto.
- Isso evita danos por ataques de tubarões ou barcos de pesca. Em regiões mais fundas, onde o risco é menor, os cabos são mais finos.
- Os cabos submarinos têm uma série de vantagens em relação aos satélites: chuvas fortes e tufões não conseguem afetar o seu sinal e o tráfego de dados é até 1.000 vezes maior do que o do satélite.

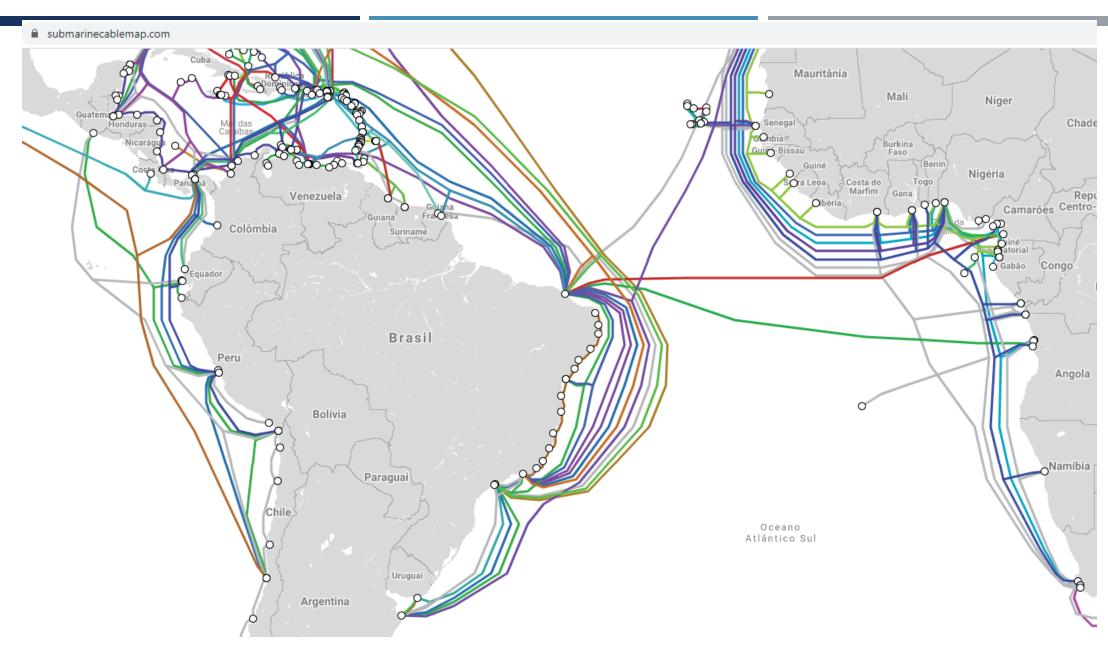
Cabo submarino que ligará Brasil e Europa já está em Cabo Verde, na África

FIBRA ÓTICA

Cabo submarino que pode ser caminho do 5G no Brasil já viaja pelo Atlântico

Cabo de fibra ótica terá 6 mil quilômetros e permitirá tráfego de 72 terabits de dados por segundo, sem passar pelos EUA

Por O Planeta Azul Publicado 05/02/2021 - 18h44


Google inaugura cabo submarino de 10 mil km entre EUA e América do Sul □ 24 de abril de 2019 Administrador Café com Ideia □ 1 Comentário □ cabo subimarino, google

Cabo submarino Curie será usado exclusivamente para oferecer serviços do Google; empresa tem três cabos no Brasil

São Paulo – Um cabo submarino de fibra óptica, ligando o Ceará a Portugal, ancorou na Praia do Futuro, em Fortaleza, em dezembro de 2020. De lá, segue viagem para pontos no Rio de Janeiro e em São Paulo. E depois para conexões na África e outros países europeus, passando por ilhas Atlântico (Cabo Verde, Madeira, Guiana Francesa). O trajeto é livre do monitoramento pelo Estados Unidos. E a instalação do cabo de 6 mil quilômetros de fibra ótica, que deve custar R\$ 1 bilhão à empresa Ellalink, vai possibilitar o tráfego de dados a 72 terabits por segundo e latência de 60 milissegundos.

O cabo da Ellalink pode alcançar 5 mil quilômetros de profundidade em seu trajeto pelo mar. Ele vai substituir outro cabo, que liga a Europa ao Brasil, mas que passa pelos Estados Unidos, percorrendo o dobro da distância, 12 mil quilômetros. O cabo submarino de fibra ótica também deve dar suporte à chegada do 5G ao país. É provável que você já tenha ouvido falar de cabos submarinos, mas, você sabe como eles funcionam? Eles costumam ser utilizados em redes internacionais de telecomunicações para interligar países e continentes.

DINÂMICA EM GRUPO – FECHAMENTO DA AULA

- I O GRUPO TEM 5 MIN PARA PESQUISAR UMA CURIOSIDADE SOBRE UM DOS MEIOS DE TRANSMISSÃO PARA COMUNICAÇÃO DE DADOS.
- 2 O GRUPO DEVE ESCOLHER UM MEMBRO PARA COMENTAR A CURIOSIDADE NO RETORNO AO GRANDE GRUPO DA TURMA.
- 3 REGISTRAR NO FORMULÁRIO DE PRESENÇA DE AULA.

REFERÊNCIAS

- COMER, Douglas E. Redes de Computadores e Internet. Porto Alegre: Bookman,
 2016. https://integrada.minhabiblioteca.com.br/reader/books/9788582603734/
- TANENBAUM, Andrew. Redes de Computadores. 5.ed. São Paulo: Campus,
 2011. https://plataforma.bvirtual.com.br/Acervo/Publicacao/2610
- MORAES, Alexandre Fernandes de; Redes de computadores. -- I. ed. -- São Paulo : Érica, 2014. https://integrada.minhabiblioteca.com.br/reader/books/9788536532981/

